mboost-dp1

unknown
- Forside
- ⟨
- Forum
- ⟨
- Nyheder
#50
Hej Jace
For at svare på dit spørgsmål vil jeg starte med at fortælle lidt mere om proteiner. I 60'erne viste Chris Anfinsen, at hvis man "udfoldede" et protein (f.eks. med varme), ville det automatisk folde tilbage til den oprindelige foldede 3-dimensionelle struktur. Du kan sammenligne det med en fjeder. Selvom du hiver, vrider eller presser en fjeder, vil den altid bevæge sig tilbage til den form, den havde før du startede.
Denne observation er ekstrem vigtig i forbindelse med proteinfoldning. Det betyder nemlig, at proteiner finder den struktur, der har mindst fri energi - ligesom fjederen.
Når man løser proteinfoldningsproblemet med en computer, ønsker man derfor at finde den struktur, der har mindst fri energi. Problemet er bare, at man ikke præcis kan beskrive de kræfter, der virker i et molekyle med mange tusinde atomer. Derfor bruger man en approksimeret energifunktion, som kun passer "nogenlunde" med den naturlige energifunktion. Noget tyder dog på, at man har fundet en tilpas god energifunktion, da F@H nu HAR foldet et protein[1]. Problemet er bare, at det protein kun har 36 aminosyrer, hvilket er meget lidt i forhold til normale proteiner, der typisk har flere hundrede aminosyrer.
Hvis man skal kunne folde større proteiner, bliver man derfor nødt til at finde en bedre algoritme, der hurtigere kan finde den struktur, der har det mindste energiniveau. I mange tilfælde er man ligeglad med selve bevægelsen af proteinet, når det folder - man er kun ude efter den færdige, foldede struktur. Hvis man derfor kun er interesseret i den foldede struktur, burde man kunne finde en hurtigere/bedre algoritme til at bestemme strukturen med den mindste energi (det er det jeg forsker i).
Du spurgte så om hvordan de kan publicere resultater, når de ikke har fundet en god algoritme endnu. Som jeg skrev, så har de foldet et lille protein på 36 aminosyrer her i 2006. Man kan publicere mange spændende ting omhandlende proteiner i denne størrelsesorden, men det bliver først rigtig interessant, når vi kan folde de store proteiner. For god ordens skyld skal det også nævnes at det IKKE tager dobbelt så lang tid at folde et dobbelt så stort protein - nærmere 1000 gange så lang tid. Så selvom algoritmerne bliver tunet ved bruge grafikkortets CPU og lignende, så kræver det stadig at vi finder bedre algoritmer.
Mvh.
Martin
Ps. Jeg læser denne tråd med jævne mellemrum, hvis nogen vil spørge mere om proteinfoldning.
[1] http://folding.stanford.edu/papers.html (42. Folding Simulations of the Villin Headpiece in All-Atom Detail)
Hej Jace
For at svare på dit spørgsmål vil jeg starte med at fortælle lidt mere om proteiner. I 60'erne viste Chris Anfinsen, at hvis man "udfoldede" et protein (f.eks. med varme), ville det automatisk folde tilbage til den oprindelige foldede 3-dimensionelle struktur. Du kan sammenligne det med en fjeder. Selvom du hiver, vrider eller presser en fjeder, vil den altid bevæge sig tilbage til den form, den havde før du startede.
Denne observation er ekstrem vigtig i forbindelse med proteinfoldning. Det betyder nemlig, at proteiner finder den struktur, der har mindst fri energi - ligesom fjederen.
Når man løser proteinfoldningsproblemet med en computer, ønsker man derfor at finde den struktur, der har mindst fri energi. Problemet er bare, at man ikke præcis kan beskrive de kræfter, der virker i et molekyle med mange tusinde atomer. Derfor bruger man en approksimeret energifunktion, som kun passer "nogenlunde" med den naturlige energifunktion. Noget tyder dog på, at man har fundet en tilpas god energifunktion, da F@H nu HAR foldet et protein[1]. Problemet er bare, at det protein kun har 36 aminosyrer, hvilket er meget lidt i forhold til normale proteiner, der typisk har flere hundrede aminosyrer.
Hvis man skal kunne folde større proteiner, bliver man derfor nødt til at finde en bedre algoritme, der hurtigere kan finde den struktur, der har det mindste energiniveau. I mange tilfælde er man ligeglad med selve bevægelsen af proteinet, når det folder - man er kun ude efter den færdige, foldede struktur. Hvis man derfor kun er interesseret i den foldede struktur, burde man kunne finde en hurtigere/bedre algoritme til at bestemme strukturen med den mindste energi (det er det jeg forsker i).
Du spurgte så om hvordan de kan publicere resultater, når de ikke har fundet en god algoritme endnu. Som jeg skrev, så har de foldet et lille protein på 36 aminosyrer her i 2006. Man kan publicere mange spændende ting omhandlende proteiner i denne størrelsesorden, men det bliver først rigtig interessant, når vi kan folde de store proteiner. For god ordens skyld skal det også nævnes at det IKKE tager dobbelt så lang tid at folde et dobbelt så stort protein - nærmere 1000 gange så lang tid. Så selvom algoritmerne bliver tunet ved bruge grafikkortets CPU og lignende, så kræver det stadig at vi finder bedre algoritmer.
Mvh.
Martin
Ps. Jeg læser denne tråd med jævne mellemrum, hvis nogen vil spørge mere om proteinfoldning.
[1] http://folding.stanford.edu/papers.html (42. Folding Simulations of the Villin Headpiece in All-Atom Detail)
Okay, mange tak for svaret. Du skriver her:
Vil det sige at de samme aminosyrer sagtens kan optræde flere gange i det samme protein, eller var det en fejl at der kun findes 20 forskellige?
Mvh
Jace
Der er 20 forskellige aminosyrer i naturen, og det er rækkefølgen af disse aminosyrer i proteinkæden der bestemmer proteinet.
Vil det sige at de samme aminosyrer sagtens kan optræde flere gange i det samme protein, eller var det en fejl at der kun findes 20 forskellige?
Mvh
Jace
#52
Hej Jace
Det kan jeg vist godt svare på.
Der findes kun 20 aminosyrer men en aminosyre kan sagtens indgå utroligt mange gange i et protein / enzym.
Som palu nævner har de allerede foldet et protein der bestod af 36 aminosyrer og det må sjovt nok også bestå af gengangere.
Når et protein skal kodes bliver det genereret ud fra DNA. DNA sekvensen bliver læst 3 "bogstaver" af gangen, for eksemel
TAC AAG TGT GGT ACT GTA CAC.
En kode står for en aminosyre. TAC koder for methionin og er samtidig en "start" kode der fortæller at prteinet starter her.
Der findes ligeledes "slut" koder der fortæller at proteinet stopper her men jeg kan ikke lige huske deres kode.
Hej Jace
Det kan jeg vist godt svare på.
Der findes kun 20 aminosyrer men en aminosyre kan sagtens indgå utroligt mange gange i et protein / enzym.
Som palu nævner har de allerede foldet et protein der bestod af 36 aminosyrer og det må sjovt nok også bestå af gengangere.
Når et protein skal kodes bliver det genereret ud fra DNA. DNA sekvensen bliver læst 3 "bogstaver" af gangen, for eksemel
TAC AAG TGT GGT ACT GTA CAC.
En kode står for en aminosyre. TAC koder for methionin og er samtidig en "start" kode der fortæller at prteinet starter her.
Der findes ligeledes "slut" koder der fortæller at proteinet stopper her men jeg kan ikke lige huske deres kode.
#52, #53
Ja, samme aminosyre kan sagtens optræde flere gange i et protein - og ikke alle 20 aminosyrer behøver at findes i proteinet. Du kan sammenligne aminosyrene med bogstaver og aminosyresekvensen med lange ord der skrives med et alfabet på 20 bogstaver. Aminosyresekvensen for Villin (det som F@H har foldet) ser sådan ud:
MET LEU SER ASP GLU ASP PHE LYS ALA VAL PHE GLY MET THR ARG SER ALA PHE ALA ASN LEU PRO LEU TRP LYS GLN GLN ASN LEU LYS LYS GLU LYS GLY LEU PHE
Her har jeg så brugt 3-bogstav forkortelserne for aminosyrene. I princippet går det så ud på at samle en kæde af disse aminosyresekvenser, og folde kæden så den frie energi er minimal.
I Protein Data Bank (http://www.rcsb.org) kan du se den foldede struktur af Villin og flere tusinde andre proteiner (skriv 1vii i søgefeltet).
Ja, samme aminosyre kan sagtens optræde flere gange i et protein - og ikke alle 20 aminosyrer behøver at findes i proteinet. Du kan sammenligne aminosyrene med bogstaver og aminosyresekvensen med lange ord der skrives med et alfabet på 20 bogstaver. Aminosyresekvensen for Villin (det som F@H har foldet) ser sådan ud:
MET LEU SER ASP GLU ASP PHE LYS ALA VAL PHE GLY MET THR ARG SER ALA PHE ALA ASN LEU PRO LEU TRP LYS GLN GLN ASN LEU LYS LYS GLU LYS GLY LEU PHE
Her har jeg så brugt 3-bogstav forkortelserne for aminosyrene. I princippet går det så ud på at samle en kæde af disse aminosyresekvenser, og folde kæden så den frie energi er minimal.
I Protein Data Bank (http://www.rcsb.org) kan du se den foldede struktur af Villin og flere tusinde andre proteiner (skriv 1vii i søgefeltet).
Opret dig som bruger i dag
Det er gratis, og du binder dig ikke til noget.
Når du er oprettet som bruger, får du adgang til en lang række af sidens andre muligheder, såsom at udforme siden efter eget ønske og deltage i diskussionerne.